Рассчитать высоту треугольника со сторонами 142, 104 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 104 + 49}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-104)(147.5-49)}}{104}\normalsize = 35.8539291}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-104)(147.5-49)}}{142}\normalsize = 26.2592157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-104)(147.5-49)}}{49}\normalsize = 76.0981352}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 104 и 49 равна 35.8539291
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 104 и 49 равна 26.2592157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 104 и 49 равна 76.0981352
Ссылка на результат
?n1=142&n2=104&n3=49
Найти высоту треугольника со сторонами 91, 64 и 28
Найти высоту треугольника со сторонами 129, 126 и 24
Найти высоту треугольника со сторонами 109, 59 и 52
Найти высоту треугольника со сторонами 134, 123 и 88
Найти высоту треугольника со сторонами 129, 128 и 18
Найти высоту треугольника со сторонами 130, 126 и 58
Найти высоту треугольника со сторонами 129, 126 и 24
Найти высоту треугольника со сторонами 109, 59 и 52
Найти высоту треугольника со сторонами 134, 123 и 88
Найти высоту треугольника со сторонами 129, 128 и 18
Найти высоту треугольника со сторонами 130, 126 и 58