Рассчитать высоту треугольника со сторонами 142, 115 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 115 + 34}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-142)(145.5-115)(145.5-34)}}{115}\normalsize = 22.8867975}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-142)(145.5-115)(145.5-34)}}{142}\normalsize = 18.5350825}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-142)(145.5-115)(145.5-34)}}{34}\normalsize = 77.4112269}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 115 и 34 равна 22.8867975
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 115 и 34 равна 18.5350825
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 115 и 34 равна 77.4112269
Ссылка на результат
?n1=142&n2=115&n3=34
Найти высоту треугольника со сторонами 146, 119 и 81
Найти высоту треугольника со сторонами 140, 136 и 102
Найти высоту треугольника со сторонами 147, 104 и 88
Найти высоту треугольника со сторонами 150, 125 и 69
Найти высоту треугольника со сторонами 147, 123 и 35
Найти высоту треугольника со сторонами 88, 73 и 19
Найти высоту треугольника со сторонами 140, 136 и 102
Найти высоту треугольника со сторонами 147, 104 и 88
Найти высоту треугольника со сторонами 150, 125 и 69
Найти высоту треугольника со сторонами 147, 123 и 35
Найти высоту треугольника со сторонами 88, 73 и 19