Рассчитать высоту треугольника со сторонами 142, 116 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 116 + 90}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-142)(174-116)(174-90)}}{116}\normalsize = 89.7997773}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-142)(174-116)(174-90)}}{142}\normalsize = 73.3575645}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-142)(174-116)(174-90)}}{90}\normalsize = 115.741935}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 116 и 90 равна 89.7997773
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 116 и 90 равна 73.3575645
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 116 и 90 равна 115.741935
Ссылка на результат
?n1=142&n2=116&n3=90
Найти высоту треугольника со сторонами 110, 107 и 53
Найти высоту треугольника со сторонами 121, 111 и 96
Найти высоту треугольника со сторонами 150, 90 и 65
Найти высоту треугольника со сторонами 110, 70 и 48
Найти высоту треугольника со сторонами 68, 59 и 21
Найти высоту треугольника со сторонами 118, 101 и 87
Найти высоту треугольника со сторонами 121, 111 и 96
Найти высоту треугольника со сторонами 150, 90 и 65
Найти высоту треугольника со сторонами 110, 70 и 48
Найти высоту треугольника со сторонами 68, 59 и 21
Найти высоту треугольника со сторонами 118, 101 и 87