Рассчитать высоту треугольника со сторонами 142, 117 и 110

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 117 + 110}{2}} \normalsize = 184.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{184.5(184.5-142)(184.5-117)(184.5-110)}}{117}\normalsize = 107.341289}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{184.5(184.5-142)(184.5-117)(184.5-110)}}{142}\normalsize = 88.4431749}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{184.5(184.5-142)(184.5-117)(184.5-110)}}{110}\normalsize = 114.172099}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 117 и 110 равна 107.341289
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 117 и 110 равна 88.4431749
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 117 и 110 равна 114.172099
Ссылка на результат
?n1=142&n2=117&n3=110