Рассчитать высоту треугольника со сторонами 142, 118 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 118 + 77}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-142)(168.5-118)(168.5-77)}}{118}\normalsize = 76.9887226}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-142)(168.5-118)(168.5-77)}}{142}\normalsize = 63.9765442}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-142)(168.5-118)(168.5-77)}}{77}\normalsize = 117.982718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 118 и 77 равна 76.9887226
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 118 и 77 равна 63.9765442
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 118 и 77 равна 117.982718
Ссылка на результат
?n1=142&n2=118&n3=77
Найти высоту треугольника со сторонами 142, 138 и 105
Найти высоту треугольника со сторонами 119, 101 и 52
Найти высоту треугольника со сторонами 115, 94 и 27
Найти высоту треугольника со сторонами 121, 82 и 53
Найти высоту треугольника со сторонами 126, 94 и 86
Найти высоту треугольника со сторонами 137, 135 и 42
Найти высоту треугольника со сторонами 119, 101 и 52
Найти высоту треугольника со сторонами 115, 94 и 27
Найти высоту треугольника со сторонами 121, 82 и 53
Найти высоту треугольника со сторонами 126, 94 и 86
Найти высоту треугольника со сторонами 137, 135 и 42