Рассчитать высоту треугольника со сторонами 142, 119 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 119 + 46}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-142)(153.5-119)(153.5-46)}}{119}\normalsize = 43.0031158}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-142)(153.5-119)(153.5-46)}}{142}\normalsize = 36.0378224}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-142)(153.5-119)(153.5-46)}}{46}\normalsize = 111.247191}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 119 и 46 равна 43.0031158
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 119 и 46 равна 36.0378224
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 119 и 46 равна 111.247191
Ссылка на результат
?n1=142&n2=119&n3=46
Найти высоту треугольника со сторонами 36, 32 и 17
Найти высоту треугольника со сторонами 137, 112 и 34
Найти высоту треугольника со сторонами 64, 61 и 56
Найти высоту треугольника со сторонами 137, 124 и 71
Найти высоту треугольника со сторонами 148, 113 и 108
Найти высоту треугольника со сторонами 109, 83 и 35
Найти высоту треугольника со сторонами 137, 112 и 34
Найти высоту треугольника со сторонами 64, 61 и 56
Найти высоту треугольника со сторонами 137, 124 и 71
Найти высоту треугольника со сторонами 148, 113 и 108
Найти высоту треугольника со сторонами 109, 83 и 35