Рассчитать высоту треугольника со сторонами 142, 119 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 119 + 48}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-142)(154.5-119)(154.5-48)}}{119}\normalsize = 45.4141576}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-142)(154.5-119)(154.5-48)}}{142}\normalsize = 38.0583434}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-142)(154.5-119)(154.5-48)}}{48}\normalsize = 112.589266}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 119 и 48 равна 45.4141576
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 119 и 48 равна 38.0583434
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 119 и 48 равна 112.589266
Ссылка на результат
?n1=142&n2=119&n3=48
Найти высоту треугольника со сторонами 69, 67 и 22
Найти высоту треугольника со сторонами 139, 120 и 62
Найти высоту треугольника со сторонами 146, 136 и 120
Найти высоту треугольника со сторонами 104, 100 и 56
Найти высоту треугольника со сторонами 129, 102 и 38
Найти высоту треугольника со сторонами 68, 66 и 29
Найти высоту треугольника со сторонами 139, 120 и 62
Найти высоту треугольника со сторонами 146, 136 и 120
Найти высоту треугольника со сторонами 104, 100 и 56
Найти высоту треугольника со сторонами 129, 102 и 38
Найти высоту треугольника со сторонами 68, 66 и 29