Рассчитать высоту треугольника со сторонами 142, 122 и 121
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 122 + 121}{2}} \normalsize = 192.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192.5(192.5-142)(192.5-122)(192.5-121)}}{122}\normalsize = 114.756898}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192.5(192.5-142)(192.5-122)(192.5-121)}}{142}\normalsize = 98.5939546}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192.5(192.5-142)(192.5-122)(192.5-121)}}{121}\normalsize = 115.705302}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 122 и 121 равна 114.756898
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 122 и 121 равна 98.5939546
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 122 и 121 равна 115.705302
Ссылка на результат
?n1=142&n2=122&n3=121
Найти высоту треугольника со сторонами 111, 101 и 26
Найти высоту треугольника со сторонами 146, 146 и 126
Найти высоту треугольника со сторонами 119, 115 и 69
Найти высоту треугольника со сторонами 70, 69 и 54
Найти высоту треугольника со сторонами 142, 115 и 97
Найти высоту треугольника со сторонами 137, 106 и 47
Найти высоту треугольника со сторонами 146, 146 и 126
Найти высоту треугольника со сторонами 119, 115 и 69
Найти высоту треугольника со сторонами 70, 69 и 54
Найти высоту треугольника со сторонами 142, 115 и 97
Найти высоту треугольника со сторонами 137, 106 и 47