Рассчитать высоту треугольника со сторонами 142, 122 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 122 + 34}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-142)(149-122)(149-34)}}{122}\normalsize = 29.5014337}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-142)(149-122)(149-34)}}{142}\normalsize = 25.3463022}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-142)(149-122)(149-34)}}{34}\normalsize = 105.858085}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 122 и 34 равна 29.5014337
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 122 и 34 равна 25.3463022
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 122 и 34 равна 105.858085
Ссылка на результат
?n1=142&n2=122&n3=34
Найти высоту треугольника со сторонами 59, 57 и 57
Найти высоту треугольника со сторонами 47, 40 и 9
Найти высоту треугольника со сторонами 89, 89 и 54
Найти высоту треугольника со сторонами 139, 106 и 89
Найти высоту треугольника со сторонами 107, 102 и 71
Найти высоту треугольника со сторонами 84, 76 и 45
Найти высоту треугольника со сторонами 47, 40 и 9
Найти высоту треугольника со сторонами 89, 89 и 54
Найти высоту треугольника со сторонами 139, 106 и 89
Найти высоту треугольника со сторонами 107, 102 и 71
Найти высоту треугольника со сторонами 84, 76 и 45