Рассчитать высоту треугольника со сторонами 142, 123 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 123 + 69}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-142)(167-123)(167-69)}}{123}\normalsize = 68.9910096}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-142)(167-123)(167-69)}}{142}\normalsize = 59.7598182}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-142)(167-123)(167-69)}}{69}\normalsize = 122.983974}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 123 и 69 равна 68.9910096
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 123 и 69 равна 59.7598182
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 123 и 69 равна 122.983974
Ссылка на результат
?n1=142&n2=123&n3=69
Найти высоту треугольника со сторонами 101, 95 и 77
Найти высоту треугольника со сторонами 48, 32 и 19
Найти высоту треугольника со сторонами 99, 97 и 8
Найти высоту треугольника со сторонами 35, 33 и 7
Найти высоту треугольника со сторонами 113, 103 и 49
Найти высоту треугольника со сторонами 144, 140 и 124
Найти высоту треугольника со сторонами 48, 32 и 19
Найти высоту треугольника со сторонами 99, 97 и 8
Найти высоту треугольника со сторонами 35, 33 и 7
Найти высоту треугольника со сторонами 113, 103 и 49
Найти высоту треугольника со сторонами 144, 140 и 124