Рассчитать высоту треугольника со сторонами 142, 124 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 124 + 104}{2}} \normalsize = 185}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{185(185-142)(185-124)(185-104)}}{124}\normalsize = 101.119713}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{185(185-142)(185-124)(185-104)}}{142}\normalsize = 88.3017214}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{185(185-142)(185-124)(185-104)}}{104}\normalsize = 120.565812}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 124 и 104 равна 101.119713
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 124 и 104 равна 88.3017214
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 124 и 104 равна 120.565812
Ссылка на результат
?n1=142&n2=124&n3=104
Найти высоту треугольника со сторонами 109, 86 и 57
Найти высоту треугольника со сторонами 113, 95 и 38
Найти высоту треугольника со сторонами 89, 85 и 47
Найти высоту треугольника со сторонами 97, 81 и 30
Найти высоту треугольника со сторонами 73, 70 и 17
Найти высоту треугольника со сторонами 146, 129 и 74
Найти высоту треугольника со сторонами 113, 95 и 38
Найти высоту треугольника со сторонами 89, 85 и 47
Найти высоту треугольника со сторонами 97, 81 и 30
Найти высоту треугольника со сторонами 73, 70 и 17
Найти высоту треугольника со сторонами 146, 129 и 74