Рассчитать высоту треугольника со сторонами 142, 126 и 112

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 126 + 112}{2}} \normalsize = 190}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{190(190-142)(190-126)(190-112)}}{126}\normalsize = 107.101156}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{190(190-142)(190-126)(190-112)}}{142}\normalsize = 95.03342}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{190(190-142)(190-126)(190-112)}}{112}\normalsize = 120.4888}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 126 и 112 равна 107.101156
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 126 и 112 равна 95.03342
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 126 и 112 равна 120.4888
Ссылка на результат
?n1=142&n2=126&n3=112