Рассчитать высоту треугольника со сторонами 142, 126 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 126 + 35}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-142)(151.5-126)(151.5-35)}}{126}\normalsize = 32.8216661}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-142)(151.5-126)(151.5-35)}}{142}\normalsize = 29.1234502}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-142)(151.5-126)(151.5-35)}}{35}\normalsize = 118.157998}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 126 и 35 равна 32.8216661
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 126 и 35 равна 29.1234502
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 126 и 35 равна 118.157998
Ссылка на результат
?n1=142&n2=126&n3=35
Найти высоту треугольника со сторонами 110, 88 и 42
Найти высоту треугольника со сторонами 137, 127 и 102
Найти высоту треугольника со сторонами 72, 69 и 18
Найти высоту треугольника со сторонами 145, 115 и 91
Найти высоту треугольника со сторонами 70, 70 и 28
Найти высоту треугольника со сторонами 103, 92 и 77
Найти высоту треугольника со сторонами 137, 127 и 102
Найти высоту треугольника со сторонами 72, 69 и 18
Найти высоту треугольника со сторонами 145, 115 и 91
Найти высоту треугольника со сторонами 70, 70 и 28
Найти высоту треугольника со сторонами 103, 92 и 77