Рассчитать высоту треугольника со сторонами 142, 130 и 114
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 130 + 114}{2}} \normalsize = 193}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{193(193-142)(193-130)(193-114)}}{130}\normalsize = 107.679792}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{193(193-142)(193-130)(193-114)}}{142}\normalsize = 98.5800909}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{193(193-142)(193-130)(193-114)}}{114}\normalsize = 122.792745}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 130 и 114 равна 107.679792
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 130 и 114 равна 98.5800909
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 130 и 114 равна 122.792745
Ссылка на результат
?n1=142&n2=130&n3=114
Найти высоту треугольника со сторонами 107, 70 и 48
Найти высоту треугольника со сторонами 97, 90 и 67
Найти высоту треугольника со сторонами 140, 105 и 93
Найти высоту треугольника со сторонами 126, 125 и 27
Найти высоту треугольника со сторонами 133, 84 и 59
Найти высоту треугольника со сторонами 149, 101 и 65
Найти высоту треугольника со сторонами 97, 90 и 67
Найти высоту треугольника со сторонами 140, 105 и 93
Найти высоту треугольника со сторонами 126, 125 и 27
Найти высоту треугольника со сторонами 133, 84 и 59
Найти высоту треугольника со сторонами 149, 101 и 65