Рассчитать высоту треугольника со сторонами 142, 130 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 130 + 50}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-142)(161-130)(161-50)}}{130}\normalsize = 49.9135798}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-142)(161-130)(161-50)}}{142}\normalsize = 45.6955308}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-142)(161-130)(161-50)}}{50}\normalsize = 129.775307}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 130 и 50 равна 49.9135798
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 130 и 50 равна 45.6955308
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 130 и 50 равна 129.775307
Ссылка на результат
?n1=142&n2=130&n3=50
Найти высоту треугольника со сторонами 144, 120 и 35
Найти высоту треугольника со сторонами 106, 96 и 30
Найти высоту треугольника со сторонами 90, 57 и 49
Найти высоту треугольника со сторонами 71, 61 и 39
Найти высоту треугольника со сторонами 102, 56 и 49
Найти высоту треугольника со сторонами 134, 129 и 76
Найти высоту треугольника со сторонами 106, 96 и 30
Найти высоту треугольника со сторонами 90, 57 и 49
Найти высоту треугольника со сторонами 71, 61 и 39
Найти высоту треугольника со сторонами 102, 56 и 49
Найти высоту треугольника со сторонами 134, 129 и 76