Рассчитать высоту треугольника со сторонами 142, 131 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 131 + 18}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-142)(145.5-131)(145.5-18)}}{131}\normalsize = 14.8136921}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-142)(145.5-131)(145.5-18)}}{142}\normalsize = 13.6661525}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-142)(145.5-131)(145.5-18)}}{18}\normalsize = 107.810759}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 131 и 18 равна 14.8136921
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 131 и 18 равна 13.6661525
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 131 и 18 равна 107.810759
Ссылка на результат
?n1=142&n2=131&n3=18
Найти высоту треугольника со сторонами 84, 79 и 25
Найти высоту треугольника со сторонами 122, 122 и 69
Найти высоту треугольника со сторонами 144, 141 и 137
Найти высоту треугольника со сторонами 50, 50 и 48
Найти высоту треугольника со сторонами 91, 90 и 71
Найти высоту треугольника со сторонами 129, 126 и 43
Найти высоту треугольника со сторонами 122, 122 и 69
Найти высоту треугольника со сторонами 144, 141 и 137
Найти высоту треугольника со сторонами 50, 50 и 48
Найти высоту треугольника со сторонами 91, 90 и 71
Найти высоту треугольника со сторонами 129, 126 и 43