Рассчитать высоту треугольника со сторонами 142, 134 и 114
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 134 + 114}{2}} \normalsize = 195}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{195(195-142)(195-134)(195-114)}}{134}\normalsize = 106.656632}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{195(195-142)(195-134)(195-114)}}{142}\normalsize = 100.647807}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{195(195-142)(195-134)(195-114)}}{114}\normalsize = 125.368322}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 134 и 114 равна 106.656632
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 134 и 114 равна 100.647807
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 134 и 114 равна 125.368322
Ссылка на результат
?n1=142&n2=134&n3=114
Найти высоту треугольника со сторонами 36, 22 и 15
Найти высоту треугольника со сторонами 41, 40 и 24
Найти высоту треугольника со сторонами 16, 13 и 8
Найти высоту треугольника со сторонами 108, 55 и 55
Найти высоту треугольника со сторонами 124, 115 и 94
Найти высоту треугольника со сторонами 135, 131 и 87
Найти высоту треугольника со сторонами 41, 40 и 24
Найти высоту треугольника со сторонами 16, 13 и 8
Найти высоту треугольника со сторонами 108, 55 и 55
Найти высоту треугольника со сторонами 124, 115 и 94
Найти высоту треугольника со сторонами 135, 131 и 87