Рассчитать высоту треугольника со сторонами 142, 135 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 135 + 18}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-135)(147.5-18)}}{135}\normalsize = 16.9770987}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-135)(147.5-18)}}{142}\normalsize = 16.1401994}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-135)(147.5-18)}}{18}\normalsize = 127.32824}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 135 и 18 равна 16.9770987
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 135 и 18 равна 16.1401994
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 135 и 18 равна 127.32824
Ссылка на результат
?n1=142&n2=135&n3=18
Найти высоту треугольника со сторонами 96, 92 и 22
Найти высоту треугольника со сторонами 131, 96 и 74
Найти высоту треугольника со сторонами 139, 117 и 105
Найти высоту треугольника со сторонами 145, 136 и 49
Найти высоту треугольника со сторонами 111, 95 и 68
Найти высоту треугольника со сторонами 107, 105 и 44
Найти высоту треугольника со сторонами 131, 96 и 74
Найти высоту треугольника со сторонами 139, 117 и 105
Найти высоту треугольника со сторонами 145, 136 и 49
Найти высоту треугольника со сторонами 111, 95 и 68
Найти высоту треугольника со сторонами 107, 105 и 44