Рассчитать высоту треугольника со сторонами 142, 135 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 135 + 34}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-142)(155.5-135)(155.5-34)}}{135}\normalsize = 33.8760978}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-142)(155.5-135)(155.5-34)}}{142}\normalsize = 32.2061493}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-142)(155.5-135)(155.5-34)}}{34}\normalsize = 134.508035}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 135 и 34 равна 33.8760978
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 135 и 34 равна 32.2061493
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 135 и 34 равна 134.508035
Ссылка на результат
?n1=142&n2=135&n3=34
Найти высоту треугольника со сторонами 123, 114 и 73
Найти высоту треугольника со сторонами 82, 68 и 19
Найти высоту треугольника со сторонами 110, 77 и 35
Найти высоту треугольника со сторонами 109, 78 и 62
Найти высоту треугольника со сторонами 59, 48 и 17
Найти высоту треугольника со сторонами 148, 130 и 107
Найти высоту треугольника со сторонами 82, 68 и 19
Найти высоту треугольника со сторонами 110, 77 и 35
Найти высоту треугольника со сторонами 109, 78 и 62
Найти высоту треугольника со сторонами 59, 48 и 17
Найти высоту треугольника со сторонами 148, 130 и 107