Рассчитать высоту треугольника со сторонами 142, 140 и 128
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 140 + 128}{2}} \normalsize = 205}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{205(205-142)(205-140)(205-128)}}{140}\normalsize = 114.855344}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{205(205-142)(205-140)(205-128)}}{142}\normalsize = 113.237663}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{205(205-142)(205-140)(205-128)}}{128}\normalsize = 125.623032}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 140 и 128 равна 114.855344
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 140 и 128 равна 113.237663
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 140 и 128 равна 125.623032
Ссылка на результат
?n1=142&n2=140&n3=128
Найти высоту треугольника со сторонами 138, 92 и 78
Найти высоту треугольника со сторонами 139, 83 и 83
Найти высоту треугольника со сторонами 147, 138 и 92
Найти высоту треугольника со сторонами 128, 128 и 2
Найти высоту треугольника со сторонами 128, 97 и 42
Найти высоту треугольника со сторонами 106, 86 и 48
Найти высоту треугольника со сторонами 139, 83 и 83
Найти высоту треугольника со сторонами 147, 138 и 92
Найти высоту треугольника со сторонами 128, 128 и 2
Найти высоту треугольника со сторонами 128, 97 и 42
Найти высоту треугольника со сторонами 106, 86 и 48