Рассчитать высоту треугольника со сторонами 142, 140 и 13

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 140 + 13}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-140)(147.5-13)}}{140}\normalsize = 12.9232304}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-140)(147.5-13)}}{142}\normalsize = 12.7412131}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-142)(147.5-140)(147.5-13)}}{13}\normalsize = 139.173251}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 140 и 13 равна 12.9232304
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 140 и 13 равна 12.7412131
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 140 и 13 равна 139.173251
Ссылка на результат
?n1=142&n2=140&n3=13