Рассчитать высоту треугольника со сторонами 142, 87 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 87 + 85}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-142)(157-87)(157-85)}}{87}\normalsize = 79.1993226}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-142)(157-87)(157-85)}}{142}\normalsize = 48.5235286}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-142)(157-87)(157-85)}}{85}\normalsize = 81.0628361}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 87 и 85 равна 79.1993226
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 87 и 85 равна 48.5235286
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 87 и 85 равна 81.0628361
Ссылка на результат
?n1=142&n2=87&n3=85
Найти высоту треугольника со сторонами 145, 122 и 77
Найти высоту треугольника со сторонами 149, 116 и 85
Найти высоту треугольника со сторонами 135, 122 и 90
Найти высоту треугольника со сторонами 130, 126 и 35
Найти высоту треугольника со сторонами 108, 93 и 31
Найти высоту треугольника со сторонами 144, 112 и 104
Найти высоту треугольника со сторонами 149, 116 и 85
Найти высоту треугольника со сторонами 135, 122 и 90
Найти высоту треугольника со сторонами 130, 126 и 35
Найти высоту треугольника со сторонами 108, 93 и 31
Найти высоту треугольника со сторонами 144, 112 и 104