Рассчитать высоту треугольника со сторонами 142, 88 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 88 + 71}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-142)(150.5-88)(150.5-71)}}{88}\normalsize = 57.2992067}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-142)(150.5-88)(150.5-71)}}{142}\normalsize = 35.5093675}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-142)(150.5-88)(150.5-71)}}{71}\normalsize = 71.0187351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 88 и 71 равна 57.2992067
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 88 и 71 равна 35.5093675
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 88 и 71 равна 71.0187351
Ссылка на результат
?n1=142&n2=88&n3=71
Найти высоту треугольника со сторонами 86, 86 и 8
Найти высоту треугольника со сторонами 102, 99 и 13
Найти высоту треугольника со сторонами 89, 85 и 84
Найти высоту треугольника со сторонами 135, 93 и 86
Найти высоту треугольника со сторонами 95, 91 и 60
Найти высоту треугольника со сторонами 102, 75 и 59
Найти высоту треугольника со сторонами 102, 99 и 13
Найти высоту треугольника со сторонами 89, 85 и 84
Найти высоту треугольника со сторонами 135, 93 и 86
Найти высоту треугольника со сторонами 95, 91 и 60
Найти высоту треугольника со сторонами 102, 75 и 59