Рассчитать высоту треугольника со сторонами 142, 92 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 92 + 72}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-142)(153-92)(153-72)}}{92}\normalsize = 62.6890449}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-142)(153-92)(153-72)}}{142}\normalsize = 40.6154375}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-142)(153-92)(153-72)}}{72}\normalsize = 80.1026685}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 92 и 72 равна 62.6890449
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 92 и 72 равна 40.6154375
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 92 и 72 равна 80.1026685
Ссылка на результат
?n1=142&n2=92&n3=72
Найти высоту треугольника со сторонами 121, 102 и 98
Найти высоту треугольника со сторонами 150, 143 и 106
Найти высоту треугольника со сторонами 142, 110 и 59
Найти высоту треугольника со сторонами 99, 81 и 64
Найти высоту треугольника со сторонами 119, 109 и 70
Найти высоту треугольника со сторонами 145, 138 и 57
Найти высоту треугольника со сторонами 150, 143 и 106
Найти высоту треугольника со сторонами 142, 110 и 59
Найти высоту треугольника со сторонами 99, 81 и 64
Найти высоту треугольника со сторонами 119, 109 и 70
Найти высоту треугольника со сторонами 145, 138 и 57