Рассчитать высоту треугольника со сторонами 142, 93 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 93 + 57}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-142)(146-93)(146-57)}}{93}\normalsize = 35.6932759}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-142)(146-93)(146-57)}}{142}\normalsize = 23.3765821}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-142)(146-93)(146-57)}}{57}\normalsize = 58.2363975}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 93 и 57 равна 35.6932759
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 93 и 57 равна 23.3765821
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 93 и 57 равна 58.2363975
Ссылка на результат
?n1=142&n2=93&n3=57
Найти высоту треугольника со сторонами 143, 115 и 106
Найти высоту треугольника со сторонами 117, 106 и 55
Найти высоту треугольника со сторонами 86, 77 и 20
Найти высоту треугольника со сторонами 122, 107 и 89
Найти высоту треугольника со сторонами 49, 30 и 27
Найти высоту треугольника со сторонами 142, 94 и 51
Найти высоту треугольника со сторонами 117, 106 и 55
Найти высоту треугольника со сторонами 86, 77 и 20
Найти высоту треугольника со сторонами 122, 107 и 89
Найти высоту треугольника со сторонами 49, 30 и 27
Найти высоту треугольника со сторонами 142, 94 и 51