Рассчитать высоту треугольника со сторонами 142, 96 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 96 + 90}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-142)(164-96)(164-90)}}{96}\normalsize = 88.7692076}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-142)(164-96)(164-90)}}{142}\normalsize = 60.0129854}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-142)(164-96)(164-90)}}{90}\normalsize = 94.6871548}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 96 и 90 равна 88.7692076
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 96 и 90 равна 60.0129854
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 96 и 90 равна 94.6871548
Ссылка на результат
?n1=142&n2=96&n3=90
Найти высоту треугольника со сторонами 89, 74 и 58
Найти высоту треугольника со сторонами 132, 80 и 70
Найти высоту треугольника со сторонами 132, 108 и 29
Найти высоту треугольника со сторонами 132, 124 и 49
Найти высоту треугольника со сторонами 91, 81 и 34
Найти высоту треугольника со сторонами 139, 135 и 97
Найти высоту треугольника со сторонами 132, 80 и 70
Найти высоту треугольника со сторонами 132, 108 и 29
Найти высоту треугольника со сторонами 132, 124 и 49
Найти высоту треугольника со сторонами 91, 81 и 34
Найти высоту треугольника со сторонами 139, 135 и 97