Рассчитать высоту треугольника со сторонами 142, 98 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 98 + 93}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-142)(166.5-98)(166.5-93)}}{98}\normalsize = 92.4874992}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-142)(166.5-98)(166.5-93)}}{142}\normalsize = 63.8294008}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-142)(166.5-98)(166.5-93)}}{93}\normalsize = 97.4599453}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 98 и 93 равна 92.4874992
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 98 и 93 равна 63.8294008
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 98 и 93 равна 97.4599453
Ссылка на результат
?n1=142&n2=98&n3=93
Найти высоту треугольника со сторонами 145, 143 и 141
Найти высоту треугольника со сторонами 133, 122 и 74
Найти высоту треугольника со сторонами 139, 115 и 41
Найти высоту треугольника со сторонами 105, 80 и 33
Найти высоту треугольника со сторонами 104, 74 и 39
Найти высоту треугольника со сторонами 138, 86 и 85
Найти высоту треугольника со сторонами 133, 122 и 74
Найти высоту треугольника со сторонами 139, 115 и 41
Найти высоту треугольника со сторонами 105, 80 и 33
Найти высоту треугольника со сторонами 104, 74 и 39
Найти высоту треугольника со сторонами 138, 86 и 85