Рассчитать высоту треугольника со сторонами 143, 103 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 103 + 102}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-143)(174-103)(174-102)}}{103}\normalsize = 101.963249}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-143)(174-103)(174-102)}}{143}\normalsize = 73.4420603}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-143)(174-103)(174-102)}}{102}\normalsize = 102.962888}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 103 и 102 равна 101.963249
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 103 и 102 равна 73.4420603
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 103 и 102 равна 102.962888
Ссылка на результат
?n1=143&n2=103&n3=102
Найти высоту треугольника со сторонами 143, 141 и 34
Найти высоту треугольника со сторонами 109, 104 и 62
Найти высоту треугольника со сторонами 132, 124 и 114
Найти высоту треугольника со сторонами 109, 85 и 68
Найти высоту треугольника со сторонами 142, 115 и 50
Найти высоту треугольника со сторонами 137, 96 и 44
Найти высоту треугольника со сторонами 109, 104 и 62
Найти высоту треугольника со сторонами 132, 124 и 114
Найти высоту треугольника со сторонами 109, 85 и 68
Найти высоту треугольника со сторонами 142, 115 и 50
Найти высоту треугольника со сторонами 137, 96 и 44