Рассчитать высоту треугольника со сторонами 143, 106 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 106 + 79}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-143)(164-106)(164-79)}}{106}\normalsize = 77.7461982}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-143)(164-106)(164-79)}}{143}\normalsize = 57.6300491}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-143)(164-106)(164-79)}}{79}\normalsize = 104.317684}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 106 и 79 равна 77.7461982
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 106 и 79 равна 57.6300491
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 106 и 79 равна 104.317684
Ссылка на результат
?n1=143&n2=106&n3=79
Найти высоту треугольника со сторонами 116, 106 и 29
Найти высоту треугольника со сторонами 140, 139 и 131
Найти высоту треугольника со сторонами 146, 128 и 54
Найти высоту треугольника со сторонами 141, 140 и 94
Найти высоту треугольника со сторонами 132, 77 и 64
Найти высоту треугольника со сторонами 77, 48 и 38
Найти высоту треугольника со сторонами 140, 139 и 131
Найти высоту треугольника со сторонами 146, 128 и 54
Найти высоту треугольника со сторонами 141, 140 и 94
Найти высоту треугольника со сторонами 132, 77 и 64
Найти высоту треугольника со сторонами 77, 48 и 38