Рассчитать высоту треугольника со сторонами 143, 108 и 85

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 108 + 85}{2}} \normalsize = 168}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168(168-143)(168-108)(168-85)}}{108}\normalsize = 84.6926178}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168(168-143)(168-108)(168-85)}}{143}\normalsize = 63.9636554}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168(168-143)(168-108)(168-85)}}{85}\normalsize = 107.609444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 108 и 85 равна 84.6926178
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 108 и 85 равна 63.9636554
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 108 и 85 равна 107.609444
Ссылка на результат
?n1=143&n2=108&n3=85