Рассчитать высоту треугольника со сторонами 143, 108 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 108 + 91}{2}} \normalsize = 171}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171(171-143)(171-108)(171-91)}}{108}\normalsize = 90.9700806}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171(171-143)(171-108)(171-91)}}{143}\normalsize = 68.7046762}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171(171-143)(171-108)(171-91)}}{91}\normalsize = 107.964491}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 108 и 91 равна 90.9700806
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 108 и 91 равна 68.7046762
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 108 и 91 равна 107.964491
Ссылка на результат
?n1=143&n2=108&n3=91
Найти высоту треугольника со сторонами 142, 88 и 81
Найти высоту треугольника со сторонами 90, 89 и 77
Найти высоту треугольника со сторонами 132, 129 и 37
Найти высоту треугольника со сторонами 141, 138 и 137
Найти высоту треугольника со сторонами 94, 89 и 27
Найти высоту треугольника со сторонами 71, 56 и 27
Найти высоту треугольника со сторонами 90, 89 и 77
Найти высоту треугольника со сторонами 132, 129 и 37
Найти высоту треугольника со сторонами 141, 138 и 137
Найти высоту треугольника со сторонами 94, 89 и 27
Найти высоту треугольника со сторонами 71, 56 и 27