Рассчитать высоту треугольника со сторонами 143, 110 и 52

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 110 + 52}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-143)(152.5-110)(152.5-52)}}{110}\normalsize = 45.2284319}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-143)(152.5-110)(152.5-52)}}{143}\normalsize = 34.7911015}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-143)(152.5-110)(152.5-52)}}{52}\normalsize = 95.6755291}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 110 и 52 равна 45.2284319
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 110 и 52 равна 34.7911015
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 110 и 52 равна 95.6755291
Ссылка на результат
?n1=143&n2=110&n3=52