Рассчитать высоту треугольника со сторонами 143, 111 и 108
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 111 + 108}{2}} \normalsize = 181}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{181(181-143)(181-111)(181-108)}}{111}\normalsize = 106.819011}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{181(181-143)(181-111)(181-108)}}{143}\normalsize = 82.9154561}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{181(181-143)(181-111)(181-108)}}{108}\normalsize = 109.786206}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 111 и 108 равна 106.819011
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 111 и 108 равна 82.9154561
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 111 и 108 равна 109.786206
Ссылка на результат
?n1=143&n2=111&n3=108
Найти высоту треугольника со сторонами 129, 128 и 91
Найти высоту треугольника со сторонами 122, 100 и 85
Найти высоту треугольника со сторонами 95, 65 и 35
Найти высоту треугольника со сторонами 99, 86 и 31
Найти высоту треугольника со сторонами 137, 124 и 31
Найти высоту треугольника со сторонами 145, 93 и 84
Найти высоту треугольника со сторонами 122, 100 и 85
Найти высоту треугольника со сторонами 95, 65 и 35
Найти высоту треугольника со сторонами 99, 86 и 31
Найти высоту треугольника со сторонами 137, 124 и 31
Найти высоту треугольника со сторонами 145, 93 и 84