Рассчитать высоту треугольника со сторонами 143, 113 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 113 + 81}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-143)(168.5-113)(168.5-81)}}{113}\normalsize = 80.8485272}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-143)(168.5-113)(168.5-81)}}{143}\normalsize = 63.8872977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-143)(168.5-113)(168.5-81)}}{81}\normalsize = 112.788686}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 113 и 81 равна 80.8485272
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 113 и 81 равна 63.8872977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 113 и 81 равна 112.788686
Ссылка на результат
?n1=143&n2=113&n3=81
Найти высоту треугольника со сторонами 147, 142 и 13
Найти высоту треугольника со сторонами 145, 129 и 23
Найти высоту треугольника со сторонами 131, 94 и 39
Найти высоту треугольника со сторонами 124, 83 и 64
Найти высоту треугольника со сторонами 142, 139 и 114
Найти высоту треугольника со сторонами 97, 88 и 81
Найти высоту треугольника со сторонами 145, 129 и 23
Найти высоту треугольника со сторонами 131, 94 и 39
Найти высоту треугольника со сторонами 124, 83 и 64
Найти высоту треугольника со сторонами 142, 139 и 114
Найти высоту треугольника со сторонами 97, 88 и 81