Рассчитать высоту треугольника со сторонами 143, 117 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 117 + 67}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-143)(163.5-117)(163.5-67)}}{117}\normalsize = 66.2933668}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-143)(163.5-117)(163.5-67)}}{143}\normalsize = 54.2400274}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-143)(163.5-117)(163.5-67)}}{67}\normalsize = 115.766029}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 117 и 67 равна 66.2933668
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 117 и 67 равна 54.2400274
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 117 и 67 равна 115.766029
Ссылка на результат
?n1=143&n2=117&n3=67
Найти высоту треугольника со сторонами 135, 116 и 96
Найти высоту треугольника со сторонами 134, 118 и 65
Найти высоту треугольника со сторонами 137, 137 и 76
Найти высоту треугольника со сторонами 83, 55 и 30
Найти высоту треугольника со сторонами 146, 141 и 103
Найти высоту треугольника со сторонами 102, 83 и 75
Найти высоту треугольника со сторонами 134, 118 и 65
Найти высоту треугольника со сторонами 137, 137 и 76
Найти высоту треугольника со сторонами 83, 55 и 30
Найти высоту треугольника со сторонами 146, 141 и 103
Найти высоту треугольника со сторонами 102, 83 и 75