Рассчитать высоту треугольника со сторонами 143, 119 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 119 + 40}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-143)(151-119)(151-40)}}{119}\normalsize = 34.8139242}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-143)(151-119)(151-40)}}{143}\normalsize = 28.9710279}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-143)(151-119)(151-40)}}{40}\normalsize = 103.571425}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 119 и 40 равна 34.8139242
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 119 и 40 равна 28.9710279
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 119 и 40 равна 103.571425
Ссылка на результат
?n1=143&n2=119&n3=40