Рассчитать высоту треугольника со сторонами 143, 124 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 124 + 112}{2}} \normalsize = 189.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{189.5(189.5-143)(189.5-124)(189.5-112)}}{124}\normalsize = 107.872538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{189.5(189.5-143)(189.5-124)(189.5-112)}}{143}\normalsize = 93.5398228}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{189.5(189.5-143)(189.5-124)(189.5-112)}}{112}\normalsize = 119.43031}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 124 и 112 равна 107.872538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 124 и 112 равна 93.5398228
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 124 и 112 равна 119.43031
Ссылка на результат
?n1=143&n2=124&n3=112
Найти высоту треугольника со сторонами 142, 126 и 116
Найти высоту треугольника со сторонами 118, 118 и 79
Найти высоту треугольника со сторонами 141, 132 и 85
Найти высоту треугольника со сторонами 134, 94 и 56
Найти высоту треугольника со сторонами 149, 138 и 22
Найти высоту треугольника со сторонами 126, 116 и 26
Найти высоту треугольника со сторонами 118, 118 и 79
Найти высоту треугольника со сторонами 141, 132 и 85
Найти высоту треугольника со сторонами 134, 94 и 56
Найти высоту треугольника со сторонами 149, 138 и 22
Найти высоту треугольника со сторонами 126, 116 и 26