Рассчитать высоту треугольника со сторонами 143, 125 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 125 + 78}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-143)(173-125)(173-78)}}{125}\normalsize = 77.8369989}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-143)(173-125)(173-78)}}{143}\normalsize = 68.0393347}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-143)(173-125)(173-78)}}{78}\normalsize = 124.73878}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 125 и 78 равна 77.8369989
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 125 и 78 равна 68.0393347
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 125 и 78 равна 124.73878
Ссылка на результат
?n1=143&n2=125&n3=78
Найти высоту треугольника со сторонами 141, 108 и 101
Найти высоту треугольника со сторонами 140, 100 и 51
Найти высоту треугольника со сторонами 56, 56 и 53
Найти высоту треугольника со сторонами 85, 60 и 59
Найти высоту треугольника со сторонами 143, 113 и 64
Найти высоту треугольника со сторонами 75, 63 и 45
Найти высоту треугольника со сторонами 140, 100 и 51
Найти высоту треугольника со сторонами 56, 56 и 53
Найти высоту треугольника со сторонами 85, 60 и 59
Найти высоту треугольника со сторонами 143, 113 и 64
Найти высоту треугольника со сторонами 75, 63 и 45