Рассчитать высоту треугольника со сторонами 143, 131 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 131 + 61}{2}} \normalsize = 167.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167.5(167.5-143)(167.5-131)(167.5-61)}}{131}\normalsize = 60.977608}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167.5(167.5-143)(167.5-131)(167.5-61)}}{143}\normalsize = 55.8606059}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167.5(167.5-143)(167.5-131)(167.5-61)}}{61}\normalsize = 130.951912}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 131 и 61 равна 60.977608
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 131 и 61 равна 55.8606059
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 131 и 61 равна 130.951912
Ссылка на результат
?n1=143&n2=131&n3=61
Найти высоту треугольника со сторонами 109, 99 и 56
Найти высоту треугольника со сторонами 126, 75 и 54
Найти высоту треугольника со сторонами 104, 99 и 68
Найти высоту треугольника со сторонами 96, 84 и 83
Найти высоту треугольника со сторонами 149, 125 и 96
Найти высоту треугольника со сторонами 52, 46 и 18
Найти высоту треугольника со сторонами 126, 75 и 54
Найти высоту треугольника со сторонами 104, 99 и 68
Найти высоту треугольника со сторонами 96, 84 и 83
Найти высоту треугольника со сторонами 149, 125 и 96
Найти высоту треугольника со сторонами 52, 46 и 18