Рассчитать высоту треугольника со сторонами 143, 133 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 133 + 76}{2}} \normalsize = 176}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176(176-143)(176-133)(176-76)}}{133}\normalsize = 75.1494638}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176(176-143)(176-133)(176-76)}}{143}\normalsize = 69.8942566}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176(176-143)(176-133)(176-76)}}{76}\normalsize = 131.511562}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 133 и 76 равна 75.1494638
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 133 и 76 равна 69.8942566
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 133 и 76 равна 131.511562
Ссылка на результат
?n1=143&n2=133&n3=76
Найти высоту треугольника со сторонами 126, 121 и 89
Найти высоту треугольника со сторонами 69, 69 и 55
Найти высоту треугольника со сторонами 117, 108 и 57
Найти высоту треугольника со сторонами 120, 115 и 10
Найти высоту треугольника со сторонами 141, 140 и 102
Найти высоту треугольника со сторонами 85, 66 и 31
Найти высоту треугольника со сторонами 69, 69 и 55
Найти высоту треугольника со сторонами 117, 108 и 57
Найти высоту треугольника со сторонами 120, 115 и 10
Найти высоту треугольника со сторонами 141, 140 и 102
Найти высоту треугольника со сторонами 85, 66 и 31