Рассчитать высоту треугольника со сторонами 143, 134 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 134 + 73}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-143)(175-134)(175-73)}}{134}\normalsize = 72.2289373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-143)(175-134)(175-73)}}{143}\normalsize = 67.6830601}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-143)(175-134)(175-73)}}{73}\normalsize = 132.584625}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 134 и 73 равна 72.2289373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 134 и 73 равна 67.6830601
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 134 и 73 равна 132.584625
Ссылка на результат
?n1=143&n2=134&n3=73
Найти высоту треугольника со сторонами 68, 59 и 45
Найти высоту треугольника со сторонами 82, 55 и 30
Найти высоту треугольника со сторонами 109, 104 и 57
Найти высоту треугольника со сторонами 126, 83 и 77
Найти высоту треугольника со сторонами 122, 110 и 36
Найти высоту треугольника со сторонами 31, 31 и 31
Найти высоту треугольника со сторонами 82, 55 и 30
Найти высоту треугольника со сторонами 109, 104 и 57
Найти высоту треугольника со сторонами 126, 83 и 77
Найти высоту треугольника со сторонами 122, 110 и 36
Найти высоту треугольника со сторонами 31, 31 и 31