Рассчитать высоту треугольника со сторонами 143, 137 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 137 + 104}{2}} \normalsize = 192}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192(192-143)(192-137)(192-104)}}{137}\normalsize = 98.5101009}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192(192-143)(192-137)(192-104)}}{143}\normalsize = 94.3768099}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192(192-143)(192-137)(192-104)}}{104}\normalsize = 129.768114}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 137 и 104 равна 98.5101009
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 137 и 104 равна 94.3768099
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 137 и 104 равна 129.768114
Ссылка на результат
?n1=143&n2=137&n3=104
Найти высоту треугольника со сторонами 54, 52 и 49
Найти высоту треугольника со сторонами 130, 113 и 86
Найти высоту треугольника со сторонами 98, 93 и 75
Найти высоту треугольника со сторонами 106, 97 и 53
Найти высоту треугольника со сторонами 147, 115 и 45
Найти высоту треугольника со сторонами 131, 93 и 61
Найти высоту треугольника со сторонами 130, 113 и 86
Найти высоту треугольника со сторонами 98, 93 и 75
Найти высоту треугольника со сторонами 106, 97 и 53
Найти высоту треугольника со сторонами 147, 115 и 45
Найти высоту треугольника со сторонами 131, 93 и 61