Рассчитать высоту треугольника со сторонами 143, 137 и 136
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 137 + 136}{2}} \normalsize = 208}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{208(208-143)(208-137)(208-136)}}{137}\normalsize = 121.364926}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{208(208-143)(208-137)(208-136)}}{143}\normalsize = 116.272692}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{208(208-143)(208-137)(208-136)}}{136}\normalsize = 122.257316}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 137 и 136 равна 121.364926
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 137 и 136 равна 116.272692
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 137 и 136 равна 122.257316
Ссылка на результат
?n1=143&n2=137&n3=136
Найти высоту треугольника со сторонами 140, 113 и 99
Найти высоту треугольника со сторонами 146, 137 и 35
Найти высоту треугольника со сторонами 143, 103 и 54
Найти высоту треугольника со сторонами 11, 6 и 6
Найти высоту треугольника со сторонами 123, 119 и 54
Найти высоту треугольника со сторонами 108, 89 и 27
Найти высоту треугольника со сторонами 146, 137 и 35
Найти высоту треугольника со сторонами 143, 103 и 54
Найти высоту треугольника со сторонами 11, 6 и 6
Найти высоту треугольника со сторонами 123, 119 и 54
Найти высоту треугольника со сторонами 108, 89 и 27