Рассчитать высоту треугольника со сторонами 143, 138 и 115
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 138 + 115}{2}} \normalsize = 198}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{198(198-143)(198-138)(198-115)}}{138}\normalsize = 106.728282}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{198(198-143)(198-138)(198-115)}}{143}\normalsize = 102.996524}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{198(198-143)(198-138)(198-115)}}{115}\normalsize = 128.073939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 138 и 115 равна 106.728282
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 138 и 115 равна 102.996524
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 138 и 115 равна 128.073939
Ссылка на результат
?n1=143&n2=138&n3=115
Найти высоту треугольника со сторонами 150, 114 и 54
Найти высоту треугольника со сторонами 138, 108 и 31
Найти высоту треугольника со сторонами 25, 23 и 18
Найти высоту треугольника со сторонами 126, 93 и 91
Найти высоту треугольника со сторонами 115, 90 и 51
Найти высоту треугольника со сторонами 150, 129 и 107
Найти высоту треугольника со сторонами 138, 108 и 31
Найти высоту треугольника со сторонами 25, 23 и 18
Найти высоту треугольника со сторонами 126, 93 и 91
Найти высоту треугольника со сторонами 115, 90 и 51
Найти высоту треугольника со сторонами 150, 129 и 107