Рассчитать высоту треугольника со сторонами 143, 140 и 28

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 140 + 28}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-143)(155.5-140)(155.5-28)}}{140}\normalsize = 27.9990377}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-143)(155.5-140)(155.5-28)}}{143}\normalsize = 27.4116453}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-143)(155.5-140)(155.5-28)}}{28}\normalsize = 139.995188}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 140 и 28 равна 27.9990377
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 140 и 28 равна 27.4116453
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 140 и 28 равна 139.995188
Ссылка на результат
?n1=143&n2=140&n3=28