Рассчитать высоту треугольника со сторонами 143, 141 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 141 + 105}{2}} \normalsize = 194.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{194.5(194.5-143)(194.5-141)(194.5-105)}}{141}\normalsize = 98.2341992}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{194.5(194.5-143)(194.5-141)(194.5-105)}}{143}\normalsize = 96.8602943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{194.5(194.5-143)(194.5-141)(194.5-105)}}{105}\normalsize = 131.914496}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 141 и 105 равна 98.2341992
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 141 и 105 равна 96.8602943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 141 и 105 равна 131.914496
Ссылка на результат
?n1=143&n2=141&n3=105
Найти высоту треугольника со сторонами 98, 88 и 86
Найти высоту треугольника со сторонами 146, 114 и 55
Найти высоту треугольника со сторонами 90, 80 и 68
Найти высоту треугольника со сторонами 117, 90 и 60
Найти высоту треугольника со сторонами 110, 100 и 39
Найти высоту треугольника со сторонами 97, 72 и 43
Найти высоту треугольника со сторонами 146, 114 и 55
Найти высоту треугольника со сторонами 90, 80 и 68
Найти высоту треугольника со сторонами 117, 90 и 60
Найти высоту треугольника со сторонами 110, 100 и 39
Найти высоту треугольника со сторонами 97, 72 и 43