Рассчитать высоту треугольника со сторонами 143, 141 и 138
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 141 + 138}{2}} \normalsize = 211}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{211(211-143)(211-141)(211-138)}}{141}\normalsize = 121.455453}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{211(211-143)(211-141)(211-138)}}{143}\normalsize = 119.756775}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{211(211-143)(211-141)(211-138)}}{138}\normalsize = 124.095789}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 141 и 138 равна 121.455453
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 141 и 138 равна 119.756775
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 141 и 138 равна 124.095789
Ссылка на результат
?n1=143&n2=141&n3=138
Найти высоту треугольника со сторонами 131, 104 и 89
Найти высоту треугольника со сторонами 30, 29 и 24
Найти высоту треугольника со сторонами 125, 97 и 83
Найти высоту треугольника со сторонами 117, 109 и 24
Найти высоту треугольника со сторонами 118, 109 и 93
Найти высоту треугольника со сторонами 113, 93 и 75
Найти высоту треугольника со сторонами 30, 29 и 24
Найти высоту треугольника со сторонами 125, 97 и 83
Найти высоту треугольника со сторонами 117, 109 и 24
Найти высоту треугольника со сторонами 118, 109 и 93
Найти высоту треугольника со сторонами 113, 93 и 75