Рассчитать высоту треугольника со сторонами 143, 142 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 142 + 59}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-143)(172-142)(172-59)}}{142}\normalsize = 57.9168219}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-143)(172-142)(172-59)}}{143}\normalsize = 57.5118092}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-143)(172-142)(172-59)}}{59}\normalsize = 139.393029}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 142 и 59 равна 57.9168219
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 142 и 59 равна 57.5118092
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 142 и 59 равна 139.393029
Ссылка на результат
?n1=143&n2=142&n3=59
Найти высоту треугольника со сторонами 83, 51 и 44
Найти высоту треугольника со сторонами 94, 70 и 68
Найти высоту треугольника со сторонами 94, 57 и 43
Найти высоту треугольника со сторонами 56, 46 и 35
Найти высоту треугольника со сторонами 137, 116 и 116
Найти высоту треугольника со сторонами 128, 119 и 117
Найти высоту треугольника со сторонами 94, 70 и 68
Найти высоту треугольника со сторонами 94, 57 и 43
Найти высоту треугольника со сторонами 56, 46 и 35
Найти высоту треугольника со сторонами 137, 116 и 116
Найти высоту треугольника со сторонами 128, 119 и 117