Рассчитать высоту треугольника со сторонами 143, 83 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 83 + 69}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-143)(147.5-83)(147.5-69)}}{83}\normalsize = 44.1742166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-143)(147.5-83)(147.5-69)}}{143}\normalsize = 25.6395802}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-143)(147.5-83)(147.5-69)}}{69}\normalsize = 53.1371011}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 83 и 69 равна 44.1742166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 83 и 69 равна 25.6395802
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 83 и 69 равна 53.1371011
Ссылка на результат
?n1=143&n2=83&n3=69
Найти высоту треугольника со сторонами 107, 99 и 16
Найти высоту треугольника со сторонами 83, 73 и 32
Найти высоту треугольника со сторонами 108, 94 и 64
Найти высоту треугольника со сторонами 123, 98 и 73
Найти высоту треугольника со сторонами 132, 128 и 119
Найти высоту треугольника со сторонами 87, 52 и 41
Найти высоту треугольника со сторонами 83, 73 и 32
Найти высоту треугольника со сторонами 108, 94 и 64
Найти высоту треугольника со сторонами 123, 98 и 73
Найти высоту треугольника со сторонами 132, 128 и 119
Найти высоту треугольника со сторонами 87, 52 и 41