Рассчитать высоту треугольника со сторонами 143, 93 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 93 + 51}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-143)(143.5-93)(143.5-51)}}{93}\normalsize = 12.4501492}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-143)(143.5-93)(143.5-51)}}{143}\normalsize = 8.09695017}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-143)(143.5-93)(143.5-51)}}{51}\normalsize = 22.7032132}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 93 и 51 равна 12.4501492
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 93 и 51 равна 8.09695017
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 93 и 51 равна 22.7032132
Ссылка на результат
?n1=143&n2=93&n3=51
Найти высоту треугольника со сторонами 143, 140 и 69
Найти высоту треугольника со сторонами 97, 86 и 80
Найти высоту треугольника со сторонами 32, 24 и 22
Найти высоту треугольника со сторонами 85, 77 и 70
Найти высоту треугольника со сторонами 110, 101 и 30
Найти высоту треугольника со сторонами 106, 77 и 74
Найти высоту треугольника со сторонами 97, 86 и 80
Найти высоту треугольника со сторонами 32, 24 и 22
Найти высоту треугольника со сторонами 85, 77 и 70
Найти высоту треугольника со сторонами 110, 101 и 30
Найти высоту треугольника со сторонами 106, 77 и 74